WOOFFR Paper Diaphragm Patented PentaCut Cone Technology Cast Aluminum Frame Neodymium Motor Copper Car | SPECIFICATIONS | | | | |--|------------------|------------|-----------------| | Transducer Size | | 8 | in | | Impedance | | 8 | Ω | | Frequency Range ¹ | | 40 - 12500 | Hz | | Sensitivity ² (2.83V 1W @ 1m) | | 88 88 | dB | | Power Rating (IEC 268-5) | | 125 | W | | Voice Coil Size | | 51.3 | mm | | Air Gap Winding Height | H H H vc | 8 23.4 | mm | | Net Weight | _ | 1.84 | kg | | PARAMETERS ³ | | | | | Eff. Piston Area | S_d | 227 | cm ² | | DC Resistance | R _e | 6.3 | Ω | | Minimum Impedance | Z _{min} | 7.7 | Ω | | Inductance | L _e | 0.434 | mH | | Resonance Frequency ⁴ | F _s | 36 | Hz | | Mechanical Q Factor | Q _{ms} | 10.6 | - | | Electrical Q Factor | Q_{es} | 0.404 | - | | Total Q Factor | Q_{ts} | 0.39 | - | | Moving Mass | M _{ms} | 35.5 | g | | Compliance | C _{ms} | 570 | μm/N | | Equivalent Volume | V _{as} | 41.2 | L | | Motor Force Factor | ВІ | 11.1 | Tm | | Motor Efficiency | β | 19.6 | $(BI)^2/R_e$ | | Linear Excursion ⁵ | X _{max} | 10.4 | mm | | Max Mechanical Excursion ⁶ | X
mech | - | mm | Details on this spec sheet are for reference only and should not be used for setting production limits. Specifications and product cosmetics are subject to change without notice. Peerless is a registered trademark of Tymphany Enterprises. All measurements conducted in test lab at 25°C ±10°C, 50%RH ±10%. ¹ Specified by Engineering as linear working range of transducer. ² Measured at 2.83V at 1m and normalized to 1W with respect to nominal impedance. ³ Measured in Free Air without preconditioning, therefore subject to some deviation. ⁴ Impedance and Fs value measured under different conditions. ⁵ Equal/Overhung: $(H_{vc} - H_{ag})/2 + H_{ag}/3$. Underhung: $(H_{ag} - H_{vc})/2 + H_{vc}/3$. ⁶ Mechanically limited excursion (e.g. bottoming, spider crash).